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There have been genuine advances in the 
diagnosis and treatment of prostate cancer in 
the last decade. Prostate cancer continues to 
be an extremely challenging disease to treat, 
particularly in the advanced stage, and remains 
the leading cause of cancer-related morbidity or 
mortality in men in the western world [1,2]. In 
terms of advanced disease there have been key 
practice-changing developments such as the 
establishment of docetaxel chemotherapy for 
castrate-resistant metastatic disease and more 
recently treatment of patients post docetaxel 
with drugs such as abiraterone [3], cabazitaxel 
[4] and more recently MDV3100 [5]. The US 
FDA approval of sipuleucel-T was a landmark 
development as the first vaccine approved for 
an advanced solid malignancy [6]. In many 
respects the potential for vaccines to impact 
on longevity (the ‘gold standard’ outcome 
parameter) has already been demonstrated and 
recent studies have shown immunotherapy is 
at least comparable with cytotoxic and novel 
hormonal therapies (Table 1). Prostate cancer 
is an extremely complex disease and many 
aspects of the natural history are still largely 
not understood. Early organ-confined disease 
is treated by surgery, radiation treatment or 
in a proportion of men, just monitored (active 
surveillance). The molecular ‘switches’ which 
dictate quiescence versus progression after each 

of these approaches are a subject of intensive 
research. Once radiation therapy or surgery fails, 
patients are treated with androgen deprivation 
therapy (orchiectomy, a luteinizing hormone 
releasing hormone agonist or antiandrogens). 
The relapse is usually indicated by a rising PSA; 
once PSA starts rising despite hormonal therapy, 
the patient is designated ‘castrate resistant’. 

The clinical course of metastatic castration-
resistant disease has changed as a result of recent 
developments and the duration of the course of 
metastatic disease may now extend to several 
years [4,7-10]. The optimal timing of treatments in 
the castrate-resistant disease is still debated and 
ongoing clinical trials will provide more answers.

The majority of prostate cancer immunotherapy 
studies have focused on men with castrate-
resistant disease. There has been extensive debate 
as to the optimal timing of any immunotherapy 
intervention, immune monitoring and 
radiological assessment of disease status post 
treatment. These discussions have led to the 
development of novel end points for clinical trials 
specifically evaluating immunotherapy.

In many respects, prostate cancer is an ideal 
model for a cancer vaccine for a number of 
reasons. The presence of well-defined prostate 
cancer antigens such as PSA, PAP and PSMA 
is an advantage and opens up many potential 
options for immunotherapy approaches. These 
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antigens are specific for prostatic tissue; however, as self-proteins 
they are not inherently immunogenic, therefore targeting 
these antigens becomes a lot more challenging [11]. The precise 
mechanism of immune response in any cancer is complex and 
the lack of effective biomarkers to predict response makes this 
treatment modality more challenging. The aim of the treatment 
is to activate cellular and humoral immunity, generate memory 
T cells that destroy cancer cells and consequently extend overall 
survival (OS). This activation can be achieved in a variety of ways; 
however, the magnitude of the response as well as targeting the 
right patient population remains a major challenge. 

As indicated earlier, prostate cancer evolves through a number 
of stages and is a relatively slow-growing cancer. This provides 
windows of opportunity for observation and immunotherapeutic 
intervention. It has been recognised for some time that in men 
with prostate cancer, testosterone withdrawal (i.e., medical or 
surgical castration) leads to rapid tumor apoptosis but also a clonal 
CD4 and CD8 T-cell infiltration within days [12]. Prostate cancer 
cells express a wide array of tumor-associated antigens that may 
potentially be targeted (box 1). PSA is the most commonly used 
prostate cancer marker, and is useful for monitoring disease status 
and response to treatment [13]. Finally, in vivo preclinical and early 
clinical trials indicate that passive and active immunotherapy 
has resulted in antitumor immune responses and, in some cases, 
tumor regression [14].

The tumor microenvironment
The aim of vaccines in cancer treatment is to induce adaptive anti-
cancer immunity. Among the many potential barriers to success 
is the tumor microenvironment; this is a hostile arena where an 
evolving tumor deposit is protected against immune rejection. 
Overcoming, or at least abrogating, these negative factors has to 
become a prerequisite and incorporated into cancer vaccine design 
and patient selection (box 2). The physical and immunological 
factors include the prevention of the diffusion of molecules such 
as antibodies and effector T cells into the tumor environment, 
compounded by the high interstitial pressure and hypoxemia 
associated with large tumor masses [15]. T cells may be of low 
avidity, anergic and exhausted, characterized by the expression 
of molecules such as PD1, B7x (B7-H4 or B7 S1) and B7-H3 [16]. 

Effector T cells may be dysfunctional due to 
local secretion of inhibitory cytokines and 
contact inhibition by CD4+CD25+ Tregs, 
myeloid-derived suppressor cells, tumor-
associated macrophages and regulatory 
natural killer cells [17]. The large range of 
soluble immunosuppressive factors includes: 
IL-10 [18–26], TGF-b [27–29], indoleamine-
pyrrole 2, 3 dioxygenase [30] and VEGF 
[31–33]. The negative effects of the tumor 
microenvironment may be overcome by 
removing tumor bulk, in situ tumor killing 
using agents such as oncolytic viruses, 
expression of immune-enhancing cytokines 
and a number of pharmacological agents. 

Clinical trial design in prostate cancer vaccines
It has been apparent for a number of years that traditional clinical 
trial design involving chemotherapy and/or radiotherapy is not 
appropriate and relevant for agents administered for passive or 
active immunomodulation. Three key issues have been highlighted 
that may potentially influence outcomes in vaccine studies: 

•	 Selection of patients at specific disease stage;

•	 Dose/scheduling;

•	 Evaluation of end points beyond the conventional clinical and 
radiological parameters.

On the whole, it is accepted that greater vaccine efficacy has been 
observed in patients with small-volume low-grade disease which 
behaves in an indolent way [34]. Assessment of efficacy is problematic 
post vaccination: in patients treated with chemotherapeutic agents, 
improved time to disease progression is thought to be essential for 
an improvement in OS. Chemotherapeutic agents affect tumor 
growth during the period of treatment and possibly for a short 
time post treatment, with the emergence of resistance in weeks or 
months. Progression or recurrence of tumor is apparent by restaging 
radiological scan (usually after every two cycles, using RECIST or 
equivalent criteria [35]), by symptomatic changes or alterations in 
serum cancer biomarkers such as PSA. By contrast, cancer vaccines 
are associated with a very different mechanism of action and the 
response may take over 6 months to develop [36]. Central to this is 
the fact that vaccine-induced humoral and/or cellular antitumor 
responses have indirect effects on tumor cells. These responses 
take time to develop and may require both a priming vaccine then 
frequent treatments to boost or sustain this response. Tumor cell 
destruction in this way may lead to a gradual cross-priming of 
additional tumor-associated antigens and this broadens the effect 
by epitope spreading [37]. This longer, more sustained response is 
probably more useful to the patient, but may take a long time to 
evolve and may lead to an OS improvement without a prerequisite 
progression-free survival. Therefore, treating patients early, when 
the tumor burden and local and systemic immunosuppression is 
low, would possibly allow a better long-term response to vaccine. It 
is likely that historically a large number of clinical trials involving 

Table 1. Survival outcomes of castrate-resistant prostate cancer: 
comparison of immunotherapy versus other modalities.

Agent Type of therapy Improvement in 
median overall 
survival (months)

Hazard 
ratio

Reduction in 
death rate 
(%)

Ref.

Sipuleucel-T Vaccine 4.1 0.78 22 [6]

PROSTVAC Vaccine 8.5 0.56 44 [56]

Abiraterone Hormone 3.9 0.66 34 [3]

Enzalutamide Hormone 4.8 0.63 37 [8]

Docetaxel Chemotherapy 2.4 0.76 24 [10]

Cabazitaxel Chemotherapy 2.4 0.70 30 [4]
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cancer vaccines have failed due to poor patient selection, including 
patients with end-stage disease where the tumor burden was 
extremely high and life expectancy short. It has been common 
practice to follow disease evaluation schedules (2-monthly scans) 
used for chemotherapy leading to withdrawal of vaccine at first 
evaluation after several months rather than allowing a useful 
response to evolve over 6–12 months [38]. These issues have been 
discussed extensively and led to the concept of ‘immune response 
criteria’ designed to capture delayed response to immunotherapy 
studies. The immune-related response criteria have been agreed 
in 2008 and prospectively applied to studies with ipilimumab [39]. 
An obvious disparity between progression-free survival, RECIST 
criteria and OS have been highlighted in two studies of prostate 
cancer (sipuleucel-T and PROSTVAC). In patients with metastatic 
malignant melanoma treated with ipilimumab, several examples 
of early disease progression on treatment followed by regression 
after continuation of the same antibody treatment at the same 
dose/schedule has been documented; as in the prostate studies a 
significant advantage in survival was reported without statistically 
significant difference in time to disease progression [6,38].

Novel end points have been proposed for vaccine studies and 
are currently under evaluation in a number of studies. The second 
Prostate Cancer Clinical Trials Working Group recently reassessed 
the outcome measures for vaccine trials in prostate cancer, and 
proposed drug evaluation pathways for cytotoxic and noncytotoxic 
agents be developed separately. The discussions also highlighted 
the often paradoxical role of PSA as a biomarker in vaccine 
studies. PSA is widely used to measure efficacy of treatment in 
castration-resistant prostate cancer (CRPC). PSA level broadly 
follows disease progression but the kinetics (doubling time, slope) 
may be more useful. New biomarkers are clearly needed and the 
emergence of technology to capture and enumerate circulating 
tumor cells and circulating endothelial cells may herald a new era 
in the assessment of vaccine efficacy, particularly in the setting of 
patients who have only a rising PSA but clear scans. Harmonization 
of immunological readouts has been long awaited, and may address 
the heterogeneity of immune responses seen in different patients on 
the same vaccines. As mentioned earlier, immune response-related 
criteria may more accurately reflect the overall biological effects 
of vaccination, and effectively provide an assessment of tumor 
volume as a continuous variable. The criteria encompass kinetics 
of response, response after initial progression and response in the 
face of new lesions. Response categories are defined as:

•	 Complete resolution of lesions: complete response in two 
consecutive observations not less than 4 weeks apart;

•	 Partial response: ≥50% decrease in tumor burden compared 
with baseline in two observations at least 4 weeks apart;

•	 Stable disease: 50% decrease in tumor burden compared with 
baseline cannot be established nor 25% increase compared with 
nadir;

•	 Progressive disease: at least 25% increase in tumor burden 
compared with nadir (at any single time point) in two 
consecutive observations at least 4 weeks apart.

The advantage of this system of assessment is that patients are 
not taken off study for the appearance of small-volume new lesions 
that do not increase tumor burden by ≥25%. This allows the 
patients to stay on study long enough to generate a sustained and 
useful antitumor response [38,39].

Specific approaches in prostate cancer
Cell-based immunotherapy
The rationale behind using whole prostate cancer cells as vaccines 
were largely based around the potentially huge antigenic repertoire 
expressed by prostate cancer cells which would not be HLA-
restricted. There would be no need to identify individual antigens 
and early preclinical work indicated high efficacy of vaccines 
involving irradiated whole tumor cells [40]. However, tumor cells 
themselves are generally poorly immunogenic so a logical progression 
of the concept was to engineer cells to express cytokines which would 
enhance antigen presentation or express proinflammatory cytokines 
which were shown to be advantageous. Although the autologous 
vaccines have generally resulted in the best responses in murine 
models, the use of autologous cells is clearly problematic as many 
patients have had their prostate glands removed and any metastatic 
deposits are difficult to access (such as bone). Coupled with the 
fact that prostate cancer cells from patients are notoriously difficult 
to grow in vitro, using allogeneic whole cells was clearly the only 
feasible way forward. Using a combination of three nonmodified 

Box 1. Tumor-associated antigens with potential 
for immunotherapy.

Proteins expressed mainly in prostate tissue:
• PSA

• PSMA

• PAP

• PSCA

• TARP

• STEAp1

Proteins overexpressed in prostate and other cancers:
• PTHrP

• hTERT

• Survivin

• EGF receptor family (HER-2/neu, EGF receptor, HER-4)

• N-cadherin

• SSX

Box 2. Factors limiting antitumor response.

• Advanced cancer with multiple metastases 

• Defective antigen presentation on tumor cells

• Immunosuppressive cytokines (IL-4, IL-6, IL-10, TGF-b)

• Immunosuppressive molecules (indoleamine 2,3-dioxygenase, 
arginine, nitric oxide)

• Upregulation of Tregs

• Myeloid-derived suppressor cells

• Upregulation of coinhibitory signaling (PD-1, B7 family) in T cells
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allogeneic cells, the Onyvax vaccine (KAEL-GemVax, Seoul, 
South Korea) resulted in a reduction in PSA velocity (PSAV) and a 
statistically significant increase in time to disease progression [40]. 
Out of the 26 patients, 11 showed statistically significant reduction 
in their PSAV. There was no significant toxicity reported. Median 
time to disease progression was 58 weeks; this compares favorably 
to historical reports of approximately 28 weeks. PSAV-responding 
patients showed an increased Th1 cytokine profile in response to 
restimulation with a vaccine lysate, while nonresponders showed a 
mixed Th1 and Th2 response. However, a follow-up randomized 
Phase IIb study failed to establish any advantage over placebo 
[Michael A et al., Manuscript in Preparation]. The prostate GVAX 
program consisted of allogeneic prostate-cancer cell lines LNCap 
and PC-3 transfected with the GM-CSF gene [41]. Attempt to use 
this vaccine alone or in combination with docetaxel was found to 
be ineffective, although it did show clear evidence of prostate cancer 
specific humoral immunity [42]. A Phase II dose-escalation study in 
men with CRPC indicated a PSA stabilization in 19% of men and 
increased median survival (35 vs expected 23 months) with the 
high-dose group [43]. The GVAX program included two studies at 
Phase III level comparing GVAX to docetaxel plus prednisone in 
men with asymptomatic CRPC as well as GVAX in combination 
with docetaxel/prednisone versus docetaxel/prednisone alone 
(VITAL-1 and VITAL-2, respectively). VITAL-1 failed a futility 
interim analysis with a <30% chance of seeing benefit and VITAL-2 
stopped due to an imbalance of deaths in the vaccine arm. However, 
follow-up of VITAL-2 study patients have shown no excessive death 
rates in the vaccine arm [41,42]. The GVAX program continues in 
other cancers (melanoma, pancreatic cancer and breast cancer).

Peptide vaccines
A large number of studies have evaluated peptide vaccines in 
prostate cancer. This was a result of identifying tumor-associated 
antigens and subsequently HLA-restricted epitopes most likely 
to induce a useful antitumor T-cell response. Although peptides 
have the advantage of ease of production and storage and are 
directed against specific tumor-associated antigens, they have 
largely resulted in weak immunogenicity, particularly when used 
as single epitopes due to tumor escape from immune recognition 
for antigen mutation or loss [44]. Furthermore, peptide-based 
strategies were based on HLA restriction and so excluded 
largely patients who are not HLA-A2 positive. Finally, there are 
indications that peptide vaccines result in optimal balance of CD4 
and CD8 active T-cell leukocyte activation, which is believed to 
be essential for effective long-lasting antitumor immunity [44].

A new, interesting approach was introduced in a study 
with a novel DNA-based and peptide-based vaccine targeting 
melanoma antigen (PRAME) and PSMA (vaccine known as 
MKC1106-PP)[45]. This involved a DNA prime, dual-peptide 
boost immunization regimen, which comprised a recombinant 
plasmid (pPRA-PSM encoding fragments derived from both 
antigens) and two peptides (E-PRA and E-PSM derived from 
PRAME and PSMA, respectively). In a multicenter Phase I study, 
26 HLA-A2-positive patients with refractory CRPC were treated 
with MKC1106-PP administered by intra-lymph node injection 

in a prime–boost sequence. There were no significant toxicities, 
and 15 out of 24 evaluable patients showed an immune response 
(PRAME-specific or PSMA-specific T cells in the blood). No 
objective response was seen by RECIST but seven patients had 
stable disease for ≥6 months, or PSA decline (four out of ten with 
prostate cancer) [45].

DNA vaccines
DNA vaccines are composed of naked DNA plasmids encoding 
tumor antigens. To date, DNA vaccines have had limited 
immunogenicity, possibly related to the low level of in vivo infection 
of antigen-presenting cells by these vaccines [46]. The optimal dose 
and immunization protocol has yet to be defined, and targets to 
date include PSMA, PSA, PSCA and STEAP. New approaches have 
included multiple immunizations with simultaneous administration 
of cytokines such as GM-CSF and IL-2 [47]. The development of 
new plasmid platforms encoding non-cell antigens and improved 
delivery systems such as liposomes, electroporation and gene gun 
have made significant improvements in terms of immunogenicity 
in cancer models [28-30]. Clinical studies using plasmid DNA with a 
vaccine adjuvant have increased PSA doubling time but to date this 
has not resulted in radiological responses nor sustained increased 
disease-free survival. Several studies have combined DNA vaccines 
encoding PAP together with GM-CSF with demonstration of PAP-
specific T-cell responses and increased PSA doubling time [48]. 
Recently, a Phase I/II dose-escalation trial of a DNA fusion vaccine 
was reported which encodes a domain (DOM) from fragment 
C of tetanus toxin linked to an HLA-A2-binding epitope from 
PSMA [47-55]. Delivery by intramuscular vaccination without or 
with electroporation was employed. A total of 32 HLA-A2+ patients 
were vaccinated and monitored for immune and clinical responses 
for a follow-up period of 72 weeks. The vaccine induced DOM-
specific CD4+ and PSMA(27)-specific CD8+ T cells. PSA doubling 
time increased significantly from 11.97 months pretreatment to 
16.82 months over the 72-week follow-up.

RNA vaccines
Despite the relative lability of RNA, there are a number of 
advantages of mRNA over DNA in the vaccine context. There 
is no risk of insertion or mutagenesis, no need to define and 
incorporate an efficient promoter and, unlike DNA, the nuclear 
membrane is not a major obstacle for mRNA as it exerts its function 
in cytoplasm and avoids vector-induced immunogenicity [53]. The 
RNA approach has been evaluated both through the injection of 
naked mRNA, the injection of mRNA encapsulated in liposomes, 
gene gun delivery and in vitro transfection of dendritic cells (DCs) 
followed by subsequent delivery to the patient [53]. mRNA can 
be produced in large amounts at a higher degree of purity and 
with a lack of induction of antibodies. The same mRNA molecule 
can theoretically provide an antigen source for adaptive immunity 
and simultaneously bind to pattern-recognition receptors, thus 
stimulating innate immunity. Despite these advantages very few 
studies have actually been completed [54,55]. DCs transfected with 
mRNA from allogeneic prostate cancer cell lines (DU145, LNCaP 
and PC-3) have been used in a clinical trial of patients with prostate 
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cancer [56]. A total of 12 out of 20 patients treated developed a 
specific immune response to tumor-mRNA-transfected DCs 
and 13 patients showed a decrease in log slope PSA. CV9103 is 
an mRNA-based vaccine encoding for specific prostate antigens 
(PSA, PSCA, PSMA and STAP1)[57]. An initial Phase I/II study 
reported a high degree of safety and tolerability and a high level 
of cellular immunogenicity. Antigen-specific T cells were detected 
in 79% of patients independent of their HLA background. The 
majority (19–58%) had induction T-cell response against multiple 
antigens and regardless of their cellular localization, encouraging 
stabilization of PSA levels after an initial rise was seen, with one 
patient developing a greater than 85% drop in his PSA level. 
Attempts to evolve strategies transfecting mRNA onto autologous 
DCs have been hampered by cost and complexity, and one study 
reported immune responses and PSA-stabilizing effects [54,55]. 

Viral vaccines
There is an accumulating body of evidence supporting the use of 
viral vectors as cancer vaccines. This advantage centers around high 
levels of gene expression associated with viral vectors and the strong 
inflammatory response directed against the viral protein [44]. Viral 
vaccines are straightforward to engineer and able to carry large 
amounts of genetic material including multiple antigens. Much of 
the advanced work has centered on pox viral vectors, and vaccinia in 
particular [58]. The Pox virus family is composed of double stranded 
DNA viruses which do not integrate with the host genome and 
replicate within the cytoplasm of infected cells. Despite a vigorous 
host immune response, poxvirus vectors induce an immune 
response by direct infection of antigen-presenting cells such as 
Langerhans cells in the skin. The use of live oncolytic viruses has 
improved the efficacy of this approach. Most recently, a heterologous 
prime–boost approach has been used encompassing oncolytic virus 
expressing antigen as the priming agent and then a nonreplicating 
different virus as a boosting agent [59]. The most advanced 
vaccine using this approach is the PROSTVAC strategy, which 
comprises two recombinant viral vectors (vaccinia and fowlpox) 
each encoding transgenes for PSA and TRICOM. TRICOM 
consists of costimulating molecules including intercellular adhesion 
molecule-1, B71 and leukocyte function-associated antigen 3 [60]. In 
a double-blind randomized Phase II study in asymptomatic patients, 
82 patients received PROSTVAC and 40 received controlled 
vectors. There was no difference in the progression-free survival 
and although initially the trial was reported as negative, after 3-year 
follow-up of the study patients, the patients with PROSTVAC were 
found to have significantly improved OS, 25.1 versus 16.6 months 
(p = 0.0061), and a better 3-year survival, 30 versus 17% (and a 
44% reduction in death rate) [6]. Based on these results multiple 
clinical trials in different stages of prostate cancer were designed, 
including a large Phase III registration study. 

A modified vaccinia virus incorporating the 5T4 antigen has 
been extensively evaluated as a cancer vaccine known as TROVAX 
[40]. 5T4 is a cell surface glycoprotein expressed by many cancers 
[61]. Unlike PROSTVAC, the TROVAX approach consists of 
homologous boost injections after initial priming and does not 
include any costimulatory molecules. Preclincial data suggested 

TROVAX functions through CD4 cell induction and that CD8 
cells are not required. A recent study showed PSA reduction in five 
out of 27 men treated in conjunction with GM-CSF [62]. 

Viral cDNA libraries as cancer vaccines
One of the key limiting factors to cancer vaccine efficacy is 
overcoming immune tolerance induced by the evolving cancer. 
Attempts to overcome this have included in situ tumor kill using 
oncolytic viruses to generate ‘danger signals’ and upregulation 
of heat-shock proteins. When immune escape occurred with 
suboptimal vaccination, the tumor cells were readily treated by 
another hit of second-line, virus-based immunotherapy. Use 
of the cDNA library allows presentation of a broad panel of 
(undefined) tumor-associated antigens, which subsequently reduces 
emergence of treatment-resistant clones and paves the way to 
rational, combined-modality approaches in the clinic. In a similar 
way, multiple intravenous injections of a cDNA library, derived 
from human melanoma cell lines and expressed using vesicular 
stomatitis virus, cured mice with established melanoma tumors. 
Successful tumor eradication was associated with the ability of 
mouse lymphoid cells to mount a tumor-specific CD4+ IL-17 
recall response in vitro [63]. The advantages of viral vectors include 
systemic delivery without the need for tumor targeting as well as the 
ability to produce the vaccines to a clinical grade. Virus-expressed 
cDNA libraries represent a novel and promising modality of cancer 
immunotherapy that can potentially address many of the key issues 
that have undermined the efficacy of cancer vaccines to date.

Targeting checkpoint blockade molecules CTLA-4 & PD-1
CTLA-4 is a key negative regulator of T-cell responses, inhibiting 
recognition of cell antigens by T cells, and has the ability to 
down regulate the antitumor immune response. Ipilimumab 
and tremelimumab are fully humanized monoclonal antibodies 
against CTLA-4 [64–67] Ipilimumab has been approved by the 
FDA after showing improved OS in metastatic melanoma [68]. 
CTLA-4 is associated with marked toxicities potentially including 
phenomena such as autoimmunity, enterocolitis, hypophysitis and 
dermatitis. A large number of clinical Phase I and II trials have 
been conducted in prostate cancer with ipilimumab with objective 
clinical and PSA responses. Based on these early studies further 
randomized clinical trials are currently in progress [69,70].

Interaction between PD-1 and its ligand PD-L1 (also known 
as B7-H1) leads to the inhibition of T-cell function. Blockade of 
this pathway is associated with significant antitumor immune 
response in murine models [71]. B7-H1 has been upregulated in a 
variety of human cancers and is associated with worse outcomes 
[72]. In a recent Phase I study, anti-PD-1 showed antitumor 
efficacy in a range of cancers [71], with a correlation between 
PD-L1 expression on the patient’s tumor and objective response. 
As PD-L1 is expressed on prostate cancer cells, this strategy is 
attractive for CRPC patients [73].

Vaccines in combination with other treatment modalities
In keeping with cancer therapy for advanced disease, in general 
it is most likely that combination rather than single-agent 
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treatments will most likely lead to long-term disease control. 
The choice of the second agent depends on a number of factors 
for synergistic antitumor effects, and may be achieved through 
a broad range of modalities (box 3). Broadly, the efficacy of 
cancer vaccines is greatly enhanced when combined either with 
another agent to increase immunogenicity or with agents that 
reduce immune suppression [74,75]. A large number of potential 
immunostimulants have been evaluated often as single agents and 
then potentially ‘retired’ by the pharmaceutical industry due to 
lack of individual efficacy. These include GM-CSF [76], interferon 
[77], IL-2 [78], IL-15 [78], IL-7 [79,80] and FLT3 ligand [80]. GM-CSF 
has been used successfully in combination with a prostate cancer 
vaccine (GVAX) described earlier, where whole tumor cells used 
as vaccines were stably transfected with GM-CSF. GM-CSF is 
now being incorporated into a number of oncolytic viruses to 
enhance immunogenicity of virus-induced local tumor kill [81]. 
A number of TLR agonists have also been used in combination 
with vaccines as immunological adjuvants [82]. Cytokines such as 
interferon enhance immune response by increasing expression of 
tumor-associated antigens and MHC molecules on tumor cells 
[83]. Other cytokines such as IL-2 may have an opposite effect with 
stimulation of Tregs, thereby increasing immunosuppression, and 
may also be responsible for T-cell exhaustion [84].

Combination therapy has aimed at abrogating or deleting 
immunosuppressive T cells, which inhibit cytotoxic T cells from 
mounting an antitumor response. Tregs have the phenotype 
CD4+CD25+FOXP3+ and have been implicated in cancer-
associated immune suppression for many years [84]. Attempts to 
delete or abrogate Tregs during vaccine therapy have resulted in 
improved outcomes in murine models and recently in a study in 
renal cancer [85]. Methods of targeting Tregs include low-dose 
cyclophosphamide (bolus or metronomic schedule), denileukin 
(IL-2 fused to a diphtheria toxin) [86], monoclonal antibodies and 
small molecule inhibitors of TGF-b [87].

Prostate cancer vaccines are also being combined with immune 
checkpoint inhibitors, which are molecules capable of reversing 
immune suppression. The approval of ipilimumab by the FDA 
for metastatic melanoma has paved the way for a number of new 
studies also including prostate cancer. A recent clinical trial 
involves evaluation of PROSTVAC vaccine in combination with 
ipilimumab and this has already shown improved survival in 
patients with metastatic prostate cancer compared with previous 
trials with PSA-TRICOM as monotherapy [60].

Although initially thought to be contradictory, there is now 
evidence that a combination of vaccine with traditional anticancer 
treatment modalities may result in enhanced vaccine efficacy. 
Several chemotherapeutic agents may enhance antitumor T-cell 
responses by a number of different mechanisms. These include 
anthracyclines, gemcitabine and oxaliplatin [88]. Radiotherapy 
including radiolabeled monoclonal antibodies and bone-targeted 
radiotherapy agents may also have similar effects [89]. The taxanes 
as a group have been associated with immune modulation for 
a number of years. Agents such as docetaxel have been shown 
to increase expression of tumor-associated antigens, peptide 
MHC complexes, adhesion molecules and death receptors, it 
also suppresses myeloid-derived suppressor cells [90]. Low-dose 
paclitaxel has been shown to enhance DC function [91] and a 
combination of docetaxel was evaluated in combination with 
GVAX and more recently PROSTVAC vaccine [60]. In men with 
prostate cancer, hormonal therapy leads to early vascular collapse, 
tumor cell apoptosis and the infiltration by a clonal population of 
T cells; therefore among patients who are or previously hormone 
naive, antigen deprivation seems to be an ideal opportunity for 
introducing a cancer vaccine. Randomized trials that are using 
PROSTVAC vaccine in combination with antiandrogen hormone 
therapy are ongoing. 

Vaccine using antigen-presenting cells
DCs are the most potent antigen-presenting cells known. Their 
evaluation as cancer vaccines has been intensive over the last 
15 years and numerous Phase II studies have evaluated the use of 
DCs pulsed with peptide or protein infected with viruses or RNA 
to treat a range of solid malignancies [63]. The sipuleucel-T vaccine 
was approved in 2010 by the FDA for the therapy of asymptomatic 
metastatic castrate-resistant prostate cancer. The vaccine consists 
of antigen-presenting cells (and not a pure population of DCs) 
extracted from peripheral blood mononuclear cells pulsed with 
PAP fused to GM-CSF [6]. The vaccine protocol included a 
leukapheresis step to purify peripheral blood mononuclear cells 
from patients and vaccine manufactured in a central facility where 
PAP fusion protein was pulsed onto the cells. The vaccine was 
subsequently infused back to patients three times at biweekly 
intervals. In the landmark Phase III trial (IMPACT) 512 men 
with asymptomatic chemotherapy-naive metastatic CRPC were 
randomized in a 2:1 ratio to sipuleucel-T or placebo [6]. The 
primary and secondary end points of IMPACT were OS and 
progression-free survival, respectively. The results were positive 
with a significantly improved median OS in the sipuleucel-T 
group compared with placebo and a relative reduction of 22% 

Box 3. Treatment modalities that may enhance 
vaccine efficacy. 

Chemotherapy
• Immunogenic tumor cell death, tumor cell apoptosis

• Expression of proinflammatory cytokines

• Antiangiogenic

Radiotherapy
• Tumor-cell apoptosis 

• Immunogenic cell death

• Immunogenic tumor death

Oncolytic virus therapy
• Tumor-cell apoptosis and/or necrosis

• Antiangiogenic

Hormonal therapy
• Clonal T-cell response

Monoclonal antibodies
• Enhanced antibody-dependent cell-mediated cytotoxicity
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in the risk of death in the sipuleucel-T group (hazard ratio: 0.78; 
p = 0.03). It is expected that the response rate was minimal and 
the time to objective disease progression was similar in the two 
groups. Therefore, OS was improved without any measurable 
antitumor effects and this may reflect the time delay taken for 
a generation of useful antitumor immunity. Antibody responses 
against the antigen were observed in 66% of patients in the 
sipuleucel-T group versus 3% in placebo. Interestingly, although 
both T-cell and antibody responses to vaccine were observed, only 
antibody responses were associated with extension of survival 
[6,11]. The vaccine was well tolerated, with mild to moderate 
toxicities including fever, fatigue, nausea, chills and headache. 
Impressively, the survival benefit of sipuleucel-T was consistent 
across a range of adverse prognostic factors such as PSA level, 
LDH level and alkaline phosphatase as well as presence of bone 
metastasis, Gleason’s score, performance status and presence 
of pain. IMPACT reflected the same outcomes as two smaller 
randomized studies. A number of further studies ongoing 
include a neoadjuvant Phase II study of sipuleucel-T prior to 
radical prostatectomy and a randomized Phase II study of 
patients with nonmetastatic cancer with biochemical recurrence 
(ClinicalTrials.gov identifier: NCT00715104 [101]). It is not clear 
whether the optimal scheduling is to administer vaccine before 
or after androgen ablation [2].

The main drawbacks of sipuleucel-T are the high cost, the 
requirement for leukapheresis and the limited number of vaccines 
that can be used. In addition, data extracted from FDA documents 
revealed that more than 65% (median) of the cells harvested 
from patients were lost at the manufacturing, indicating the 
complexity of the process and limitations regarding widespread 
use [92]. Further analysis of the IMPACT study also suggested 
that the effect of vaccination varied in the younger and older age 
group (with 65 years of age used as a cutoff), with older patients 
deriving a lot less benefit from sipuleucel-T [92]. Ongoing studies 
will hopefully shed more light on the unanswered questions. 

Conclusion
Prostate cancer is an ideal clinical model for the application of 
cancer vaccines. The first FDA approval of a cancer vaccine was 
for this disease, and the endorsement of sipuleucel-T has been a 
significant moment in cancer immunotherapy overall. As well 

as the identification of new tumor antigens and vaccine delivery 
platforms, overall efficacy will increase by addressing the powerful 
limiting factors within the tumor microenvironment. Combined 
with careful patient selection and the use of new immune response 
criteria we would expect an incremental improvement in efficacy. 
The extension of vaccines to the adjuvant and minimal residual 
or minimally progressive disease scenarios are ongoing, as well as 
combination with different treatment modalities. 

Expert commentary
The treatment of prostate cancer is changing rapidly. More 
patients are diagnosed early and cured, and those who develop 
metastatic disease are able to enjoy a longer life. Further 
developments are needed and many of those will focus on 
treatment modalities and the correct schedule of various options 
such as surgery, radiotherapy, chemotherapy, hormonal treatment 
and immunotherapy. The approval of sipuleucel-T as treatment 
for prostate cancer gave immunotherapy a defined role and helped 
to understand the dynamics of response to vaccine in cancer 
patients. 

Five-year view
The next 5 years will hopefully see progress in new immunotherapy 
approaches in the field of vaccines as well as antibody treatments. 
The trials will focus on timing of immunotherapy in patients 
with early disease or those who develop castrate-resistant cancer 
but without any metastatic disease. The process has to be 
simplified and vaccines such as whole cell vaccines or gene therapy 
treatments will hopefully show efficacy equivalent to adoptive cell 
transfer methods, making the immunotherapy treatments easily 
accessible and available for more patients. Antibodies targeting 
checkpoint blockade are likely to become part of the treatment 
pathway.
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Key issues

• New developments in prostate cancer treatment have had an impact on the survival and quality of life in cancer patients.

• The US FDA approval of sipuleucel-T was a landmark development as the first vaccine approved for an advanced solid malignancy.

• New end points to assess the efficacy of immunotherapy treatments are essential and need to be widely adopted (immune-related 
response criteria).

• Cell-based immunotherapy approaches are very advanced but none of the treatments have yet been approved and new well-designed 
trials that take into account immune-related response criteria are essential.

• Currently the only approved vaccine is based on using the host’s antigen-presenting cells pulsed with PAP fused to GM-CSF. The 
production is complex, limited by high cost and not widely available to cancer patients.

• Antibodies targeting checkpoint blockade such as anti-CTLA4 and anti-PD1 antibodies are likely to become part of standard treatment 
in the near future.
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