INTRODUCTION

The distribution of *Amphimedon queenslandica* is patchy on coral reefs in the Great Barrier Reef, with small, localized populations detected in shallow, still water reef-flat environments. *A. queenslandica* is a spermcast spawner, in which fertilization occurs internally. Sperm presumably originate from neighboring reproductive individuals within the population. The ability to genotype individual embryos within a single brood chamber has the potential to shed light on the fertilization biology and generation/maintenance of genetic diversity in this sessile invertebrate. Here, we describe a protocol for rapidly genotyping individuals using polymorphic microsatellite loci. The loci are amplified by PCR using a pair of primers specifically designed for the region of interest with a fluorescent dye attached to the 5'-end to enable easy detection of the amplified product. An advantage of this procedure is that fluorescently labeled PCR products can be combined (i.e., multiplexed) to reduce time and cost when using the genotyping machine. The dye label and size of the product must be taken into consideration when multiplexing. For example, three differently labeled PCR products can be multiplexed, or PCR products with the same label can be multiplexed as long as the allelic size ranges do not overlap. The amount of each cleaned, labeled PCR product added to the multiplex must be optimized depending on the dye and the PCR efficiency.

RELATED INFORMATION

For an introduction to *Amphimedon* as a model organism, see The Demosponge *Amphimedon queenslandica: Reconstructing the Ancestral Metazoan Genome and Deciphering the Origin of Animal Multicellularity* (Degnan et al. 2008). A protocol for Isolation of *Amphimedon Developmental Material* (Leys et al. 2008) is also available.

MATERIALS

Reagents

Agarose gel and electrophoresis buffer (e.g., 1X TAE or 0.5X TBE; see Step 11)

Ammonium acetate (7.5 M)

Amphimedon adults

Bovine serum albumin (BSA) (optional; see Step 4)

DNeasy Tissue Kit (QIAGEN)

dNTPs (10 mM)

Dry ice

Ethanol (70% and 100%)
H2O (RNase- and DNase-free)

Lysis buffer for sponge tissue (prewarmed to 55°C)

Add proteinase K (10 mg/mL) to lysis buffer just before use (i.e., for each sample, add 90 µL of lysis buffer and 3.6 µL of proteinase K).

PCR buffer (10X)

Primers (microsatellite specific)

Label the forward primer during synthesis (e.g., by Sigma Oligos) with a fluorescent dye (e.g., Hex, Fam, Tet) attached to the 5'-end.

Proteinase K (10 mg/mL, prepared in H2O)

Seawater, 0.22-µm filtered (FSW)

Taq polymerase

Equipment

Centrifuge and plate

Dissecting instruments

Gel electrophoresis equipment

Genotyping machine and software (e.g., MegaBACE 1000)

Grinder (Eppendorf)

Heating blocks preset to 99°C

Microcentrifuge

Shaker table preset to 55°C

Thermal cycler

Tubes (microcentrifuge, 0.6-mL)

Tubes (PCR, 0.2-mL)

METHOD

Sample Collection

1. Collect tissue samples of the developmental stage of interest from adult sponges.

 For embryos and larvae
 i. Dissect brood chambers as described in Isolation of Amphimedon Developmental Material (Leys et al. 2008).

 ii. Transfer each individual embryo or larva to 10 µL of FSW in a 0.6-mL microcentrifuge tube, and freeze at –80°C as soon as possible after removal from the maternal tissue.

 For adult tissue
 iii. Dissect tissue surrounding brood chambers from an adult sponge.

 iv. Transfer tissue to a 1.5-mL microcentrifuge tube, and freeze at –80°C as soon as possible after dissection.
2. Place samples on dry ice to transfer them from the field site back to the laboratory. Store at –80°C until extraction.

Quick Total Genomic DNA Extraction

3. Extract DNA from the tissues of interest.

 For individual embryos and larvae
 i. Add 90 µL of prewarmed lysis buffer to a microcentrifuge tube containing a single embryo or larva in 10 µL of FSW.
 ii. Pipette up and down several times to immediately lyse the sample. Continue until it completely dissolves.
 iii. Incubate in a heating block for 10 min at 99°C to inactivate the proteinase K.
 iv. Centrifuge in a microcentrifuge at 13,000 rpm for 15 min at room temperature.
 v. Transfer the supernatant to a fresh tube. Store at –20°C.

 For adult sponge tissue
 vi. In Step 1 of the manufacturer’s protocol, use ~25 mg of starting material. Place the tissue in a 1.5-mL microcentrifuge tube with 180 µL of buffer ATL. Use a grinder to squeeze the adult tissue to expose all of the cells.
 vii. In Step 2 of the manufacturer’s protocol, add 40 µL of 10 mg/mL proteinase K. Place on a shaker table at 70 rpm for 1 h at 55°C.
 viii. In Step 3 of the manufacturer’s protocol, after shaking, squeeze the adult tissue again with a grinder. Remove the sponge matrix from the tube.
 ix. Perform the remaining steps of the manufacturer’s protocol on this sponge tissue lysate.

Microsatellite Amplification

4. Use a thermal cycler to perform PCR by standard methods in 0.2-mL PCR tubes. Include in each 25-µL reaction: fluorescently tagged microsatellite-specific primers; 1 µL of template (from Step 3); and appropriate concentrations of dNTPs, PCR buffer (with MgCl$_2$), and *Taq* polymerase. Optimize PCR conditions for each set of primers.

 *Optimization can include adjusting the annealing temperature (54°C-58°C), MgCl$_2$ concentration (1-3 mM), additives (e.g., BSA), and the type of *Taq* polymerase used. The size of the amplified loci ranges from 180 to 400 bp.*

5. To precipitate the labeled product, add 150 µL of 100% ethanol (i.e., six times the volume of the PCR reaction) and 5 µL of 7.5 M ammonium acetate (0.2X volume).

6. Centrifuge in a plate centrifuge at 4000 rpm for 30 min at room temperature.

7. Decant the supernatant. Wash the pellet with 150 µL of 70% ethanol.

8. Centrifuge at 4000 rpm for 5 min at room temperature.

9. Centrifuge the plate upside down at 1000 rpm for 1 min to remove the supernatant entirely.

10. Air-dry the pellet, and redissolve it in H$_2$O.

 Determine the volume empirically, depending on the dye and PCR efficiency. Note that Hex-labeled products should be redissolved in less water because this fluorescent dye has a weaker signal.
11. Visualize PCR products on an agarose gel to determine PCR efficiency.

12. Run the samples on the genotyping machine.

13. Analyze the output with genotyping software, using the adult samples to indicate the maternal alleles.

To correctly analyze the data, the strength of the signal from each labeled PCR product must be similar. When genotyping very young individuals (i.e., white- or brown-stage embryos), three alleles are sometimes detected. These represent both maternal alleles and a paternally contributed third allele. This is the result of maternal tissue from the brood chamber still being attached to the embryo at the time of collection and genomic DNA extraction.

ACKNOWLEDGMENTS

This research has been supported by grants from the Australian Research Council.

REFERENCES

Caution

Dry ice (Carbon dioxide; CO₂)

CO₂ (carbon dioxide; dry ice) in all forms may be fatal by inhalation, ingestion, or skin absorption. In high concentrations, it can paralyze the respiratory center and cause suffocation. Use only in well-ventilated areas. In the form of dry ice, contact with carbon dioxide can also cause frostbite. Do not place large quantities of dry ice in enclosed areas such as cold rooms. Wear appropriate gloves and safety goggles.

Caution

Proteinase K

Proteinase K is an irritant and may be harmful by inhalation, ingestion, or skin absorption. Wear appropriate gloves and safety glasses.

Emerging Model Organisms

The Demosponge *Amphimedon queenslandica*: Reconstructing the Ancestral Metazoan Genome and Deciphering the Origin of Animal Multicellularity

Bernard M. Degnan¹,⁵, Maja Adamska¹,², Alina Craigie¹, Sandie M. Degnan¹, Bryony Fahey¹, Marie Gauthier¹, John N.A. Hooper³, Claire Larroux¹, Sally P. Leys⁴, Erica Lovas¹, and Gemma S. Richards¹
INTRODUCTION

Sponges are one of the earliest branching metazoans. In addition to undergoing complex development and differentiation, they can regenerate via stem cells and can discern self from nonself ("allorecognition"), making them a useful comparative model for a range of metazoan-specific processes. Molecular analyses of these processes have the potential to reveal ancient homologies shared among all living animals and critical genomic innovations that underpin metazoan multicellularity. *Amphimedon queenslandica* (Porifera, Demospongiae, Haplosclerida, Niphatidae) is the first poriferan representative to have its genome sequenced, assembled, and annotated. *Amphimedon* exemplifies many sessile and sedentary marine invertebrates (e.g., corals, ascidians, bryozoans): They disperse during a planktonic larval phase, settle in the vicinity of conspecifics, ward off potential competitors (including incompatible genotypes), and ensure that brooded eggs are fertilized by conspecific sperm. Using genomic and expressed sequence tag (EST) resources from *Amphimedon*, functional genomic approaches can be applied to a wide range of ecological and population genetic processes, including fertilization, dispersal, and colonization dynamics, host-symbiont interactions, and secondary metabolite production. Unlike most other sponges, *Amphimedon* produce hundreds of asynchronously developing embryos and larvae year-round in distinct, easily accessible brood chambers. Embryogenesis gives rise to larvae with at least a dozen cell types that are segregated into three layers and patterned along the body axis. In this article, we describe some of the methods currently available for studying *A. queenslandica*, focusing on the analysis of embryos, larvae, and post-larvae.

RELATED INFORMATION

BACKGROUND INFORMATION

Sponges (phylum Porifera) are sessile, aquatic (largely marine) animals with external pores connected to a flowthrough system of canals and chambers through which water is pumped to extract food. Passage of water through the body is driven by a single layer of specialized flagellated cells called "choanocytes." Unlike most other metazoans, sponges do not construct true tissues, lack a centralized gut, and do not possess conventional nerves and muscle. Nonetheless, they have a range of other cell types, including a population of totipotent stem cells and skeletogenic cells that form siliceous or calcitic spicules (Hooper and Van Soest 2002). Although many have not yet been described or named, there are an estimated 15,000 sponge species alive today. Their evolution and ecology are associated tightly with a range of microbial symbionts and the ability of these sponge-microbe communities to synthesize and deploy unique bioactive compounds with a variety of ecological roles (Taylor et al. 2007).

A. queenslandica is named for Queensland and was described originally from individuals found at Heron and One Tree Island Reefs in the Capricorn-Bunker Group, southern Great Barrier Reef (GBR) (Hooper and Van Soest 2006). Its discovery off Magnetic Island on the central/northern GBR suggests a pan-GBR distribution. Recent analysis of an *Amphimedon* species collected from Dahab, Egypt revealed identical external characteristics and brood chambers with identically colored and sized embryos and larvae, suggesting a possibly wider distribution, with Red Sea specimens having 93% sequence identity with the *A. queenslandica* 28S rRNA gene. Anecdotal evidence from southern Japan suggests that a species similar to *A. queenslandica*, as well as closely related sister species, lives there, and thus it might be distributed beyond the South Pacific Ocean.
A. queenslandica growths range from thin to thick encrustings over coral or other substrata. The latter form has massive lobate or digitate bulbs arising from the base, measuring no more than several centimeters in diameter. Live sponges are gray-blue to green, with a lighter shade of gray around the rim of the oscules. They have large brood chambers (up to 1 cm in diameter) containing as many as 200 embryos at any time (Leys and Degnan 2001). Hooper and Van Soest (2006) provide a full description of the species and comparison with similar species in the Indo-West Pacific.

A. queenslandica’s taxonomic history is checkered by misidentification and misallocation. This is the result of the state of poriferan taxonomy (partly remedied by a phylum synopsis by an international consortium of taxonomists) (Hooper and Van Soest 2002), the difficulty in identifying haplosclerid sponges in general and Niphatidae in particular (see, e.g., Desqueyroux-Faúndez and Valentine 2002), and the limited knowledge of Australian sponge fauna. Indeed, many species that initially appear to be new have been described previously in the largely ancient Australian sponge literature (see, e.g., Hooper and Wiedenmayer 1994; http://www.environment.gov.au/cgi-bin/abrs/fauna/tree.pl?pstrVol=PORIFERA&printMode=1). A. queenslandica, for example, was initially identified as a species of Reniera (Haplosclerida, Chalinidae) based on a fragment of a single specimen (Leys and Degnan 2001). Its eventual allocation as a new species of Amphimedon in the Niphatidae family was confirmed by collection of several more specimens from different habitats within Heron and One Tree Islands.

A. queenslandica was discovered in 1998 on Heron Island Reef by S.P. Leys of B.M. Degnan’s group during a survey to identify a sponge species with which to study development. Unlike most sponges, A. queenslandica broods embryos in large chambers year-round. Larvae are relatively large (~0.6 mm) and overtly negatively phototactic, moving quickly to the darker side of any collecting vessel. These attributes led to detailed morphological studies of its embryogenesis (Leys and Degnan 2002) and behavioral studies of its photoresponsiveness (Leys and Degnan 2001; Leys et al. 2002). These studies established nondestructive methods in which adult animals are maintained while attached to boulders on the reef flat (i.e., "ranching"), allowing larvae to be harvested from the same adults over time. Methods developed subsequently in the Degnan laboratory include in vitro cultivation of individual late-stage embryos and post-larvae and cultivation of transplanted embryos in situ.

As with most marine invertebrates, A. queenslandica has a biphasic life cycle, including a planktonic larval phase and benthic juvenile and adult phases (Degnan and Degnan 2006). Eggs are fertilized internally, and embryos are brooded until they hatch as parenchymella larvae. For the first 4 h after emergence, larvae appear to be unable to settle, and undergo metamorphosis. During this period (up to 24 h post-emergence), larvae are conspicuously negatively phototactic, although this diminishes in older larvae (Leys and Degnan 2002). Negative phototaxis apparently results from the sum of responses to changing light intensity by individual ciliated cells in the posterior ring. Rotating larvae expose some ciliated cells to light, but shade others. Shaded cilia cease beating, causing the animal to swim into darker crevices among the coral boulders on the reef flat. Similar phototaxis has been documented in other parenchymella larvae (for review, see Maldonado 2006), confirming the widespread use of this mechanism.

SOURCES AND HUSBANDRY

A. queenslandica is reasonably common on coral reefs of the southern GBR. They or sibling species have been found as far away as the Red Sea, suggesting that these populations as model organisms are widely available as sources throughout the Indo-Pacific and possibly beyond. They live on the shallow subtidal reef flat and crest, mainly under boulders, in crevices, among coral rubble, in sand patches, and sometimes on hard algal pavement, partially exposed during low tide. Distribution on a given reef tends toward the patchy, often with adults found in areas of low current. In addition to easy accessibility, it is a robust sponge that tolerates being pried off the substratum. Amphimedon can be collected from the field and maintained in local aquaria under ambient conditions (i.e., in flowthrough systems). Alternatively, collected Amphimedon can be ranched in a local embayment where they can be readily accessed. During collection, care must be taken not to touch the sponge directly or expose it to air at any time. Ranched Amphimedon can live for more than 1 year.

Although adult Amphimedon can be transported in small volumes of seawater (for a maximum transport time of up to 10 h) and maintained in closed, seawater aquaria (24°C-27°C) for months, there is no evidence that they flourish in
They can be maintained by being fed liquid foods developed for filter-feeding marine invertebrates twice per week. However, the number of viable embryos in captivity appears to diminish with time. Ideally, *Amphimedon* are best studied in a marine research laboratory near the point of collection, with access to high-quality flowing seawater. This ensures that adults, embryos, larvae, and experimentally manipulated cultures are maintained under ambient conditions. Most studies on the southern GBR populations are based at the University of Queensland Heron Island Research Station (http://www.marine.uq.edu.au/index.html?page=54940) and the University of Sydney One Tree Island Research Station (http://www.bio.usyd.edu.au/OTI/).

RELATED SPECIES

Sponge systematics are undergoing a major revision, based on recent morphological data (Hooper and Van Soest 2002) and a range of studies using molecular data (for review, see Wörheide et al. 2005). Traditionally, sponges were divided into three classes: Demospongiae, Hexactinellida, and Calcarea (Hooper and Van Soest 2002). However, there is debate about the monophyly of phylum Porifera and class Demospongiae (see, e.g., Borchiellini et al. 2004). The order of branching of "basal" metazoan phyla--Porifera, Placozoa, Ctenophora, and Cnidaria--and whether sponges are monophyletic or paraphyletic has a direct impact on the reconstruction of the ancestor from which all living metazoa stem. Undertaking comparative molecular, cellular, and developmental analyses within the Porifera will yield significant insights into the early metazoan genome and its role in the evolution of the first multicellular animals.

Most modern analyses of sponge genomics and development focus on demosponges, with the *A. queenslandica* genome being the only one sequenced to date. Many developmental and structural genes have been isolated and characterized in several demosponges, including *Ephydatia, Geodia, Spongilla*, and *Suberites* (Segawa et al. 2006; Wiens et al. 2007). Emerging models include the homoscleromorph *Oscarella* (Nichols et al. 2006), the calcareous sponges *Sycon* and *Leucetta* (Manuel and Le Parco 2000), and the hexactinellid *Oopscas* (Leys et al. 2006). Detailed studies of these species will allow for a more comprehensive view of sponge genomics, evolution, and development, and thus a more mature view of the earliest metazoa.

USE OF THE *A. QUEENSLANDICA* MODEL SYSTEM

Amphimedon is a demosponge and, as such, represents one of the most (if not the most) ancient phyla of multicellular animals alive today. Sponges lack many fundamental metazoan attributes, including true tissues, yet comprehensive molecular phylogenies place them firmly within the Metazoa. They are usually considered to be an example of the earliest extant branching metazoan lineage, although two recent hypotheses have suggested that placozoans or ctenophores could be more basal (Dellaporta et al. 2006; Dunn et al. 2008).

Knowledge of the formation and patterning of cell types via embryogenesis, skeletogenesis, or the cellular and molecular basis of sponge behavior is rudimentary at best. The ancestor from which all extant metazoa stemmed was likely more sophisticated than is widely appreciated, and the morphogenetic tools used by all modern animals evolved well before the Cambrian explosion. A detailed understanding of these features in sponges will contribute to the reconstruction of the ancestral metazoan genome and elucidate its role in directing the construction and maintenance of the first multicellular animals (Larroux et al. 2006, 2007, 2008a; Fahey et al. 2008).

Amphimedon larval morphogenesis provides a framework within which to address gastrulation and tissue formation in early animals. Embryogenic studies in poriferans have been largely descriptive, but many parallels can be drawn with other sponge larvae, of both parenchymella and other types, from studies on *Amphimedon*. The expression of "polarity" genes during *Amphimedon* larval morphogenesis (Adamska et al. 2007a) suggests that similar mechanisms function more broadly within the Porifera. Expression of a suite of genes involved in post-synaptic signaling (Sakarya et al. 2007) similarly hints at complex signaling systems in sponges.

Amphimedon embryos are large, yolky spheres numbering several hundred to a single chamber. Oogenesis has not been studied, but oocytes presumably arise from amoeboid cells within the maternal tissue, because feeding chambers with choanocytes (an alternative source of gametes in other sponges) are not always adjacent to chambers. Spermatocysts were encountered in only one of every 50 sponges examined in early surveys (Leys and...
Degnan 2001). Cleavage is irregular because of the yolky cytoplasm; early in development, unequal cleavages begin, and small and large cells (micromeres and macromeres) are produced throughout the embryo. During cellular differentiation, micromeres produce cilia and other features characteristic of differentiated cells (e.g., pigmentation in cells fated to form the pigment ring), whereas macromeres retain lipid and yolk reserves. The two cell types gradually sort, with micromeres localizing at the embryo periphery. Sclerocytes (i.e., skeletogenic cells) differentiate and start to form incipient spicules early in development. At the same time, a subpopulation of cells with dark pigment granules begins to migrate toward the future posterior pole. Wnt gene expression in this region preempts pigment cell migration (Adamska et al. 2007a). Cellular differentiation and sorting continue as the pigment cells form first a dense spot at the pole and subsequently tighten into a discrete ring of pigment that designates the larval posterior pole. Sclerocytes, with fully differentiated spicules secreted intracellularly, aggregate toward the posterior pole with spicules largely oriented in an anterior-posterior direction. The fully differentiated larva has distinct anterior-posterior polarity with a ciliated columnar epithelium, but it also has bare anterior and posterior poles, spicules in sclerocytes at the posterior pole, and a ring of pigment adjacent and posterior to a ring of cells with very long cilia. Interspersed among the columnar epithelial-like cells are globular cells (formerly called "mucous cells") and flask cells. Current evidence suggests that globular cells express genes found in eumetazoan neurons and they have a sensory role (Richards et al. 2008).

Because Amphimedon adults produce many embryos year-round, parenchymella larvae can be harvested continually. In addition, the larvae are large and easy to study, both for morphology and behavior. Amphimedon development and developmental gene structure and expression have been studied extensively (Leys and Degnan 2001, 2002; Degnan et al. 2005; Larroux et al. 2006, 2007, 2008a; Adamska et al. 2007a,b; Sakarya et al. 2007; Fahey et al. 2008; Gauthier and Degnan 2008a,b). Excellent recent reviews on sponge embryos and larvae are also available (Leys and Ereskovsky 2006; Maldonado 2006).

GENETICS, GENOMICS, AND ASSOCIATED RESOURCES

A. queenslandica is not amenable to classical genetic studies and currently has no available genetic markers, maps, or mutants. Given the inability to culture this species, it is unlikely that such resources will become available in the near future. All genes isolated and characterized in *A. queenslandica* are given a name with the prefix "Amq" followed by a descriptor based on its metazoan/eukaryotic gene family. Ideally, names are based on orthology to known eumetazoan genes, for example, *AmqNF-κB* (Gauthier and Degnan 2008a) or *AmqSix1/2* (Larroux et al. 2008a). Sequence divergence often makes such precise naming difficult. In such cases, a more generic name is applied (e.g., *AmqBHLH1*) (Simionato et al. 2007; Richards et al. 2008). The Amphimedon genome also contains genes with novel domain architectures. Names are created for these genes that reflect their relation to known eumetazoan genes. For example, *Amq-hedgling* encodes a large transmembrane protein with the Hedgehog amino-terminal signaling domain (Adamska et al. 2007b). Novel genes are named based on contig number and location; these may be revised in the future if homologs are identified.

The *A. queenslandica* genome has been sequenced by the United States Department of Energy Joint Genome Institute (http://www.jgi.doe.gov/). Genomic resources currently include genomic traces (~14-fold coverage) and more than 75,000 ESTs. These sequences are available in the National Center for Biotechnology Information Trace archive (http://www.ncbi.nlm.nih.gov/Traces/traces.cgi?) and can be retrieved by searching with species_code = "RENIERA SP. JGI-2005" (reflecting the incorrect original designation of *Amphimedon* as *Reniera* sp.). Release of the annotated draft assembly by the Joint Genome Institute is scheduled for late 2008.

Biological material (fixed specimens, RNA, cDNA, genomic DNA, etc.) can generally be obtained by direct collection from field sites or by contacting the corresponding investigator. Natural populations are managed sustainably, and collections of adults might be restricted periodically. Permits are required to collect animals from the GBR.

TECHNICAL APPROACHES

Protocols are available that describe methods to obtain Amphimedon tissues at various stages of development (with particular emphasis on embryonic, larval, and juvenile samples; see Isolation of Amphimedon Developmental Genotyping Individual Amphimedon Embryos, Larvae, and Adults -- Degn... http://cshprotocols.cshlp.org/cgi/content/full/2008/13/pdb.prot5098?print...
Material [Leys et al. 2008]) and to process them for studies such as in situ hybridization (Whole-Mount In Situ Hybridization in Amphimedon [Larroux et al. 2008b]) and genotyping (Genotyping Individual Amphimedon Embryos, Larvae, and Adults [Degnan et al. 2008]). Methods for microinjection of individual embryos to study cell migration during development are described in Analysis of Cell Movement in Amphimedon Embryos by Injection of Fluorescent Tracers (Adamska and Degnan 2008).

ACKNOWLEDGMENTS
This research has been supported by grants from the Australian Research Council.

REFERENCES

Collingwood, Australia.

Recipe

Lysis buffer for sponge tissue

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Quantity (for 50 mL)</th>
<th>Final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCl (0.5 M)</td>
<td>5 mL</td>
<td>50 mM</td>
</tr>
<tr>
<td>Tris-Cl (1 M, pH 9.0)</td>
<td>0.5 mL</td>
<td>10 mM</td>
</tr>
<tr>
<td>Triton X-100</td>
<td>100 µL</td>
<td>0.1%</td>
</tr>
<tr>
<td>H₂O</td>
<td>to 50 mL</td>
<td></td>
</tr>
</tbody>
</table>

Store at room temperature.

Copyright © 2008 by Cold Spring Harbor Laboratory Press. Online ISSN: 1559-6095 Terms of Service All rights reserved. Anyone using the procedures outlined in these protocols does so at their own risk. Cold Spring Harbor Laboratory makes no representations or warranties with respect to the material set forth in these protocols and has no liability in connection with their use. All materials used in these protocols, but not limited to those highlighted with the Warning icon, may be considered hazardous and should be used with caution. For a full listing of cautions, click here.

All rights reserved. No part of these pages, either text or images, may be used for any reason other than personal use. Reproduction, modification, storage in a retrieval system or retransmission, in any form or by any means-electronic, mechanical, or otherwise-for reasons other than personal use is strictly prohibited without prior written permission.

This article has been cited by other articles:

ColdSpring Harbor Protocols

The Demosponge Amphimedon queenslandica: Reconstructing the Ancestral Metazoan Genome and Deciphering the Origin of Animal Multicellularity
[Abstract] [Full Text]